2025年10月22日(水)

Prg4+ fibroadipogenic progenitors in muscle are crucial for bone fracture repair

Qi He, Jiawei Lua, Qiushi Liang, Lutian Yao, Tingfang Sun , Huan Wang , Michael Duffy , Xi

Jiang, Yuewei Lin, Ji-Hyung Lee, Jaimo Ahn, Nathaniel A. Dyment, Foteini Mourkioti, Joel

D. Boerckel, and Ling Qin

**PNAS** 2025:122(31):e2417806122

Bone regeneration depends on several local and systemic factors. Bone injury activates the

quiescent periosteal mesenchymal progenitors, driving their expansion and differentiation

into chondrocytes and osteoblasts for callus formation. Periosteal damage or removal often

leads to fracture nonunion. Similarly, less muscle coverage and muscle swelling are observed

to adversely affect bone fracture healing. In this context, muscle fibroadipogenic progenitors

(FAPs), mesenchymal progenitors residing in muscle interstitium differentiate into fibrous

and adipose tissue, or under special conditions into periosteal cells for bone regeneration.

Proteoglycan 4 (Prg4) marks a specific subpopulation of FAPs that localizes in the muscle

tissue but not periosteum, cortical bone or intact bone marrow. This study demonstrates that

muscle-resident Prg4+ FAPs, rather than tendon-derived FAPs, contribute to closed,

transverse fracture healing. Upon acute injury, Prg4+ FAPs expand and show potential for

differentiation into periosteal cells. Furthermore, the descendants of Prg4+ FAPS in the

periosteum serve as mesenchymal progenitors that assist in second injury healing of closed

tibial fractures. Ablation experiments confirm that  $Prg4^+$  FAPs are essential for fracture callus

formation and functional repair. In contrast, Prg4+ FAPs show limited contribution in

intramembranous cortical drill-hole injury.

Overall, this research reveals the cross-talk between muscle and bone tissues, and expands the

concept of cross-tissue cellular transdifferentiation and fibroblast plasticity. It brings forth

possible therapeutic applications and highlights how muscle injury status, muscle health, or

the integrity of muscle tissues at fracture sites might be more important than previously

thought for bone healing.

Desai Karishma M

Postdoctoral fellow

Oral Health Science Center, Tokyo Dental college